Category Archives: technology

The Law of the Instrument

Sometimes I wonder if I overdo this fourfold thing. The law of the instrument says something like “if all you have is a hammer, everything looks like a nail”. Dividing things up into four parts, or bringing four things together into a whole, is the belabored theme of this blog. Fourfolds are my hammer, and what a nice hammer it is!

When my father was in a nursing home, he had a roommate for a period of time that would just draw houses continuously. Not nice architectural renderings either, but houses like a child would, where you can see three sides of it at once (the front and both sides). I might be doing that one day, endlessly drawing fourfold diagrams in endless fourfold permutations.

Speaking of hammers, Martin Heidegger also wrote at length about them in regards to equipment or instrumentality. He contrasted a working hammer that was “ready-to-hand” to a broken hammer that was “present-at-hand”. The working hammer recedes into the background of its ready utility, but the broken hammer, being useless, is merely present in pieces.

The notion of science as negative enterprise was raised by Heidegger since scientific investigation only gives you the present-at-hand, and not the smooth extension of ability that is ready-to-hand. I disagree, because how can you fashion a hammer in the first place or repair it if you aren’t full cognizant of its constituents and construction?

I realize that some worthwhile analyses are made by this approach to technology. For example, few are able to construct or repair modern automobiles or smartphones. In a sense, that should make Heidegger happy, since most are using this modern equipment with no clue as to how they work. And if they wear out or break or become obsolete, they are too costly to repair or upgrade and are sent to the scrapheap. But I say this tongue-in-cheek.

Heidegger’s “tool analysis” is the basis for much of his later writings, specifically concerning “das Geviert” (simply meaning square). If tool analysis is itself a tool, what happens when you apply tool analysis towards itself? Does one get an infinite fractal of fourfolds, ascending and descending, approaching and receding?

Further Reading:

https://en.wikipedia.org/wiki/Law_of_the_instrument#Abraham_Maslow

https://en.wiktionary.org/wiki/if_all_you_have_is_a_hammer,_everything_looks_like_a_nail

https://en.wikipedia.org/wiki/Heideggerian_terminology#Present-at-hand

https://en.wikipedia.org/wiki/Heideggerian_terminology#Ready-to-hand

Look at this painting!

https://www.dia.org/art/collection/object/das-geviert-94252

[*10.193]

<>

 

The Question Concerning Technology

“The Question Concerning Technology” by Martin Heidegger is not an easy read. This short essay is full of unusual terms and phrases. I think part of the reason for this is Heidegger’s style of writing, and part is the capacity of the German language to build compound words easily. Thus in the English translation you have several hyphenated words like “standing-reserve” and “bringing-forth”. Of course, difficult terminology seems to be typical for Heidegger, but there are also many words taken from classical philosophy that have special meanings, which Heidegger was well versed in.

In this essay we first learn that our question is really a questioning and will be a process that “builds a way” to understanding, so initially we are more interested in the journey than the destination. The way that is desired is towards a “free relationship” between an “open” human existence and the “essence of technology” (essence being what a thing is, as if we can know exactly, so finding out is part of our journey). Second, we are told that the essence of technology is not technological, so to try to find what this essence is by using more technology is to be in an “unfree” relationship with it.

Third, our question concerning technology is really asking what technology is. A common and “correct” definition is that it is both a means to an end, and a human activity. The former is the instrumental aspect of technology, and the later is the anthropological aspect. But Heidegger does not think that these two aspects are the complete or “true” ones, and so our questioning leads us to inquire as to the essence of instrumentality. For that, we turn next to consider the general causes of things and their effects, and so on to examine the classical Four Causes of Aristotle.

Readers of this blog will be familiar with the Four Causes, as I have mentioned them frequently. I consider them an important paradigmatic four-fold, and have tried to develop a more modern version of them with my four-fold Structure-Function. However, Heidegger was no friend to modernity, and his treatment of the Four Causes and the remainder of his essay shows that plainly. But let us continue on with our journey before we spoil our quest. As a reminder, here is a quick list of the Four Causes:

  • Efficient Cause – causa efficiens – Logos
  • Material Cause – causa materialis – Hylos
  • Formal Cause – causa formalis – Eidos
  • Final Cause – causa finalis – Telos

By thinking about causes in this way, can we discover the essence of causality? Heidegger explains that what causality is involves the things responsible for the bringing about of other things or what kinds of things a thing is indebted to in order for it to occur. (Others have argued that instead of causes another good name is the four “becauses”, i.e. the reasons for or the explanations of things). Note that Heidegger uses the terms responsibility and indebtedness to give the Four Causes (what I consider to be) a normative aspect.

Heidegger presents to us a silver chalice as an example of how to think about the the Four Causes in relation to Greek thought. Hylos (or hyle) is the material we start with, Eidos is its form or aspect, Telos is responsible for bringing together both (but not as aim or purpose but as bounds or context), and all three are indebted to… Logos? Heidegger now departs from how Aristotle was understood to view the causes named after him, and says so himself, in order to argue that these four ways of responsibility and indebtedness are really what these causes are all about.

To be continued… maybe…

Further Reading:

https://en.wikipedia.org/wiki/The_Question_Concerning_Technology

Click to access question_concerning_technology.pdf

http://www.english.hawaii.edu/criticalink/heidegger/guide1.html

https://en.wikipedia.org/wiki/Heideggerian_terminology

https://en.wikipedia.org/wiki/Four_causes

https://plato.stanford.edu/entries/aristotle-causality/

Notes for Further Writing:

Interesting articles on Shintoism and Heidegger:

https://iainews.iai.tv/articles/spirited-away-meets-heidegger-we-killed-the-gods-with-technology-but-the-sacredness-of-life-is-continuous-auid-1104

https://prezi.com/hvul4-ped2z4/shintoism-and-spirited-away/

https://en.wikipedia.org/wiki/Shinto

Interesting article on language and technology (tool-making) arguing that they are related: The structure of language mirrors the methodological structure of tool making:

https://www.theatlantic.com/science/archive/2018/06/toolmaking-language-brain/562385/

A nice symmetric view of the Four Causes as things undergoing changes is shown in:

Boris Henning / The Four Causes, The Journal of Philosophy, Vol.106, No.3 (March 2009), pp. 137-160

[*10.114]

<>

 

 

Science, Technology, Engineering, and Mathematics

STEM: Science, Technology, Engineering, and Mathematics. We often hear that these areas of education and expertise are critical for the development of our modern society. To attract students to these fields, banners and logos are full of bright colors and crisp graphics. In comparison, above is my rather dull diagram. Not very enticing, is it?

Some are now adding Arts to the four, giving STEAM. I think the Arts are important of course, but fives don’t go with my oeuvre.

In addition, I give you a diagram with Chinese substituted for English (科學 技術 工程 數學).

Further Reading:

https://en.wikipedia.org/wiki/Science,_technology,_engineering,_and_mathematics

https://www.google.com/search?tbm=isch&sa=1&ei=uQMhW4zXG8Wc5gK13ImoBw&q=science+technology+engineering+mathematics&oq=science+technology+engineering+mathematics

[*10.110]

<>

Four Futures after Capitalism

sq_four_futuresAs conservative capitalism whips itself into an ecstasy of fevered apoplexy over the change in political climate, it is fun to step back and imagine what might transpire after capitalism’s eventual passing. To offer help, Peter Frase has written the excellent and cautionary “Four Futures: life after capitalism”.

Frase gives us four idealized futures blocked out by a matrix of two variables each ranging over two possibilities: 1) the structure of the social environment being either egalitarian or hierarchical, and 2) the resources of the natural environment being either scarce or abundant. What’s nice about the descriptions of these futures are the ample examples from science fiction media: TV, movies, novels, etc.

One assumption over all four futures is that, given sufficient resources of material and energy, technology, automation, and robotics will improve to the extent that human work as we know it will eventually be made unnecessary. Another is that climate change is real and will demand solutions and amelioration or it will only get much worse. And a big take home message is that the rich and powerful are in a much better position to benefit from ignoring climate change than you and me.

What will happen to the common person when their labor is superfluous? Not detailed are the possibilities if even the humans at the top are deemed unnecessary and the machines revolt. In order of diminishing happiness for most of us:

  • Communism: Egalitarian Abundance
  • Rentism: Hierarchical Abundance
  • Socialism: Egalitarian Scarcity
  • Exterminism: Hierarchical Scarcity

The cover has a nice iconography for the futures: a conveyor belt on a 3D printer assembly line shows a glass of wine for Communism (Cheers!), a key hole for Rentism, a watering can for Socialism, and a skull for Exterminism (Ouch!).

References:

Peter Frase / Four Futures: life after capitalism

Some better reviews than mine:

The Art of the Possible: Peter Frase’s “Four Futures”

https://www.theguardian.com/books/2016/nov/24/four-futures-life-after-capitalism-peter-frase-review-robots

Notes:

There’s a similar fourfold of futures I forgot I mentioned in my article on Trompenaars, although fragmentation-coherence is used instead of scarcity-abundance, and there is a more positive spin:

https://equivalentexchange.wordpress.com/2015/12/18/the-four-cultures-model-of-fons-trompenaars/

Also, Frase has a blog that can be found at:

http://www.peterfrase.com/blog/

[*9.82, *9.190, *9.191]

<>

Pass It On!

sq_pass_it_on3Is humankind selfish by nature or altruistic? Are people competitive or cooperative? Tribal or cosmopolitan? The short answer to all these questions is yes. We are both of those things, and often at the same time.

In this new age of nationalism and protectionism, we are diminished by our choices made from fear and small mindedness. Almost all the knowledge we have is from the choices, both good and bad, made by our forebearers, and those they have met and helped and been helped by along the way. Certainly our individual hard work does us credit, but most of the credit goes to what is automatically given to us at birth.

This includes but is not limited to: our language and our culture; our knowledge and science; our heritage and cultural relationships; our technology and skills; our education and institutions. All this and more, generated by our ancestor’s struggle to survive and flourish, as well as for the survival and flourishing of their progeny and their society.

As we think the horizons of our future recede we squabble over our claims and our distrust. I think we are made better more by our sharing of knowledge than our hoarding. Of course the things shared must have value; they cannot be lies or false or fake. Let us extend our concerns to all of humankind and to the earth we share.

  • If someone can create something, then others can make it.
  • If someone can find or discover something, then others can know, see, or grasp it.
  • If someone can teach something, then others can learn it.
  • If someone can demonstrate or show something, then others can use, do, or apply it.

Pass it on!

Also See:

Invention and Discovery

https://equivalentexchange.wordpress.com/2016/04/15/invention-and-discovery/

[*9.87]

<>

The Anatomy of Technology

sq_technology

Does technology have a fundamental structure? Does it have a unifying code? I am of the mind that technology is the totality of all tools devised by humankind. If so, what constitutes a tool? Again, I believe in a very broad definition, and think language and culture are also tools and thus technology.

Van Wyk proposes that technology is “created competence.” This competence performs actions (processing, storing, transporting) on stuff (matter, energy, information). sq_technology_frameworksThis begins the first framework of a technology, its anatomy. Along with anatomy, three other frameworks of a technology to consider are its taxonomy, evolution, and ecology.

In my diagram above, I have added a fourth action: that of creation. After all, technology is created competence. One might say technology cannot create, but is itself created. It is true that matter and energy cannot be created, but their shape and flow can be designed. Also, it seems that information can be created, and not just processed.

Further, I propose another addition to the stuff that technology acts upon: technology itself. Technology is often a mix of matter, energy, and information, and so technology can operate on technology and recursively act on and also improve itself. So perhaps both information and technology can at least be thought of as created.

So, in order to broaden the scope of the anatomy of technology, I propose changing the anatomical grid from 3 x 3 to 4 x 4. Then we have as actions

  • Creating & Designing
  • Storing & Accessing
  • Moving & Dispersing
  • Changing & Processing

Of course, the 3 x 3 anatomical grid is a well researched tool, and the changes I propose may not be justified or useful.

References:

Rias J. van Wyk / Technology: a fundamental structure? Knowledge, Technology, and Policy. 9/2002 Vol 15, Issue 3 (14-35)

PDF at http://cdigital.uv.mx/bitstream/123456789/10226/2/Rias%20J.%20van%20Wyk.pdf

http://www.technoscan.com/

To read:

Rias J. van Wyk / Technology – a unifying code: a simple and coherent view of technology (2004)

Frederick Christoffel Lochner / The functionality grid as paradigm for management of technology

PDF at http://scholar.sun.ac.za/handle/10019.1/17994

Notes:

Van Wyk’s technological analysis is called Strategic Technology Analysis (STA).

In N. Katherine Hayles’ “My Mother Was a Computer”, three modalities of information are making, storing, and transmitting. Interesting that processing is not listed as a modality.

My Mother Was a Computer: Digital Subjects and Literary Texts – N. Katherine Hayles

[*1.37, *3.32, *8.30, *9.2, *9.154, *9.176, *9.177]

<>

Four Dimensional Space-time

sq_4d_spacetime

Here’s a simple fourfold I’ve been ignoring just because it’s so trivial, but that triviality can be deceiving. Space-time as formulated in special relativity has four dimensions: three of space and one of time. Our everyday experience shows us the three dimensions of space: length, width (or breadth), and depth (or height), but time is a different kind of thing because we cannot see or move forward and backward through time with our eyes or body, like we can along the axes of space.

Personally, only our memory and imagination can let us range through time. Of course, after the invention of language and more recent technologies, the spoken word, writings, photographs, audio recordings, and videos can also be used. But it’s not the same as shifting one’s gaze along the length of something or moving one’s body across a width.

So, we can move semi-freely through the three spatial dimensions but our movement in time seems to be fixed into a relentless forward motion that we have no control over. And because gravity pulls us down onto the surface of the world, one of the spatial dimensions (depth or height) is more limiting than the other two.

sq_ll2Thus another interesting comparison to this fourfold is to that of linear logic. One observation is that length and width can be considered reversible but depth and time can be considered somewhat irreversible. That’s not true of course, but because of gravity it is easier to descend than to ascend, and it’s far easier to move into the future than into the past. But we can see into the distant past, just not our own, as we turn our telescopes to the heavens.

Space without time could have four or even higher dimensions, but we have no empirical evidence that it is so. Mathematically, however, we can easily construct multidimensional spaces. One representation of four dimensional space is by using quaternions, which have four dimensions to the complex numbers’ two. Tuples of real numbers or even vector spaces can also be used. However, the geometry of space-time is not Euclidean; it is described by the Minkowski metric.

Novels about characters living in different numbers of spatial dimensions are an interesting way to learn and think about them. The very first was Flatland by Edwin Abbott Abbott, about a being limited to two dimensions that learns about a third outside his experience when a three dimensional being comes to visit. Just recently I’ve finished reading Spaceland by Rudy Rucker, about an ordinary human person limited to the three dimensions of space that learns about the fourth dimension by similar reasons.

Links:

http://en.wikipedia.org/wiki/Special_relativity

http://en.wikipedia.org/wiki/Minkowski_space

http://en.wikipedia.org/wiki/Four-dimensional_space

http://en.wikipedia.org/wiki/Flatland

http://en.wikipedia.org/wiki/Flatland_%282007_film%29

http://en.wikipedia.org/wiki/Spaceland_%28novel%29

[*8.72]

<>

Metropolis

sq_metropolis_agents“The Mediator between the head and hands must be the heart!”

— Fritz Lang’s Metropolis

A couple of years ago I watched The Complete Metropolis, the recently restored version of the 1927 silent film. The message that flashes before the viewer at the beginning and at the end of the film is “The Mediator between the head and hands must be the heart!”

I can’t remember if I’ve seen some previous version of Metropolis or not. I’m sure I’ve seen many of the scenes but I hadn’t seen all of them. I cannot speak for previous versions of the film, but this one was enjoyable and I’m glad I watched it.

Somewhat like the film Agora mentioned previously that showed the gulf between science and religion, this film details a fictional conflict between a technocratic ruling class and a subjugated working class. There is some religious imagery throughout and the epic battle between Freder and Rotwang even takes place on the rooftops of a cathedral.

Interestingly, the three elements of the epigram above correspond to three of the elements of Carl Jung’s Psychological Types: sq_jungHead with Cognition, Heart with Emotion, Hands with Sensation. What about the missing aspect, Intuition? I’ve placed Maria at that point because her meeting with Freder really initiates the plot of the film.

Actually I should have placed Grot, a worker foreman, at the Hands position instead of Rotwang. However, I think Rotwang is a more interesting character. Comparing these characters to those in The Tempest and Forbidden Planet, Rotwang is more like Prospero’s Caliban, or Morbius’s Id monster.

As evidence of his evil nature, Rotwang creates a robotic version of Maria and uses her to incite the workers to confusion and violence. Note that the spirit Ariel and Robby the Robot are also placed at Jung’s Intuition position.

Several of the images from the banner on this blog are from the movie, and are of the central tower and office of Fredersen. It is called “The New Tower of Babel” since it was inspired by Bruegel’s painting of the Tower of Babel.

Notes:

For the “4 H Club”, the four H’s are Health, Head, Hands, and Heart. Probably deserves its own post!

Links:

http://en.wikipedia.org/wiki/Metropolis_%281927_film%29

http://en.wikipedia.org/wiki/Tower_of_Babel

http://en.wikipedia.org/wiki/4-H

[*7.152]

<>

Ohm’s Law

Charts for the equations of Ohm’s Law usually consist of the fourfold relation between Voltage (Volts), Current (Amps), Resistance (Ohms), and Power (Watts). For each electrical quantity, there are three equations that represent it in terms of two others, making twelve equations total.

Ohm’s Law is really only between voltage, current, and resistance. Apparently, power is more correctly introduced by the formula for “Joule heating”.

Both voltage and current have been in two fourfolds previously (Four Basic Electrical Components and System Dynamics) but not power and resistance. Well, resistance did make an appearance as a relation between current and voltage.

The twelve equations can be generated by the following identities (where E = voltage, I = current, R = resistance, and P = power):

I*R/E = P/(I*E) = P*R/E^2 = R*I^2/P = 1

http://en.wikipedia.org/wiki/Ohm%27s_law

http://en.wikipedia.org/wiki/Joule%27s_first_law

Google search for images for Ohm’s Law.

[*8.4, *8.5, *8.8, *8.9, *8.10]

<>

 

The Four Bases of DNA

DNA neither cares nor knows. DNA just is. And we dance to its music.

Richard Dawkins

DNA, the genetic code and biological machinery all life on earth shares, has been in the news lately. It was once thought that much of our DNA was useless junk, but recent research reveals that this portion of our DNA is very important to the operation of epigenesis. This portion of DNA could be called dark bio-matter, or better dark bio-information or even dark bio-code, since it contains switches and instructions that guide each individual organism’s developmental growth through time.

Previously, the parts of DNA thought to be important were those regions that define the proteins that assemble to form our tissues. Mutations in the DNA that specify proteins can lead to disease because the mutated proteins cannot perform the functions that they need to. Of course, mutated proteins can also be improved and increase health. Comparing protein sequences across species shows that we have many commonalities as well as important differences with our animal cousins. What was once considered a “great chain of being” is now thought to be a great tree of life, all shown by DNA.

DNA is also a fourfold, and a double dual as well, since for the four bases Adenine (A), Thymine (T), Guanine (G), and Cytosine (C): A pairs with T, and G with C. I am not saying that DNA is analogous to the other fourfolds presented here, but it makes a nice diagram.

Questions:

Why does DNA have four bases and not two, like binary computer code?

Even more of DNA determines our health and variation, the things that make us who we are. Does that constrain us even more, or will this knowledge make us more free?

http://en.wikipedia.org/wiki/DNA

http://blogs.smithsonianmag.com/smartnews/2012/09/junk-dna-isnt-junk-and-that-isnt-really-news/

[*7.112]

<>