Quaternions

The Quaternions are a number system that enlarges the Complex numbers, just as the Complex numbers enlarge the Real numbers. In fact, Quaternions can be thought as special pairs of Complex numbers, just as Complex numbers can be thought as special pairs of Real numbers.

Quaternions can be used for all sorts of wonderful things, such as rotations in 3D space, instead of using matrices. Above is a pitiful diagram (although better than my last one) of the Quaternion units 1, i, j, and k used in the typical representation a + b i + c j + d k. Please read about them in the links below and be amazed!

Further Reading:

https://en.wikipedia.org/wiki/Quaternion

https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation

http://mathworld.wolfram.com/Quaternion.html

http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/

https://www.quantamagazine.org/the-strange-numbers-that-birthed-modern-algebra-20180906/

[*10.160]

<>

 

 

One thought on “Quaternions”

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.